INDEX

1. General Information
 1.1 SERVOMECH linear actuators .. page 3
 1.2 SERVOMECH linear actuators range ... page 4
 1.3 Linear actuator selection ... page 9
 1.4 1st approximation selection diagrams .. page 17
 1.5 Buckling resistance under push load - Euler diagrams page 23
 1.6 Ball screw lifetime – performed stroke related to load page 30
 1.7 Ball screw lifetime related to load and linear speed page 33
 1.8 Actuator duty cycle permissible F_d related to dynamic load and speed .. page 38
 1.9 Self-locking conditions .. page 39

2. Linear Actuators ATL Series and BSA Series
 2.1 Manufacturing features ... page 41
 2.2 Technical data .. page 42
 2.3 Performances .. page 46
 2.4 Overall dimensions .. page 54
 2.5 Options and accessories .. page 82
 2.6 Special arrangements ... page 96
 2.7 Ordering code ... page 97
 2.8 Selection data sheet ... page 98
 2.9 Check sheet ... page 100

3. Linear Actuators CLA Series and CLB Series
 3.1 Manufacturing features ... page 103
 3.2 Technical data .. page 104
 3.3 Performances .. page 106
 3.4 Overall dimensions .. page 108
 3.5 Options and accessories .. page 114
 3.6 Special arrangements ... page 120
 3.7 Ordering code .. page 122
 3.8 Selection data sheet ... page 123
 3.9 Check sheet ... page 124

4. Linear Actuators UAL Series and UBA Series
 4.1 Manufacturing features ... page 127
 4.2 Technical data .. page 128
 4.3 Performances .. page 130
 4.4 Overall dimensions .. page 136
 4.5 Options and accessories .. page 146
 4.6 Special arrangements ... page 151
 4.7 Ordering code .. page 152
 4.8 Selection data sheet ... page 153
 4.9 Check sheet ... page 154

5. Linear Actuators TMA Series
 5.1 Manufacturing features ... page 157
 5.2 Technical data .. page 158
 5.3 Performances .. page 160
 5.4 Configurations .. page 162
 5.5 Overall dimensions .. page 164
 5.6 Options and accessories .. page 173
 5.7 Special arrangements ... page 178
 5.8 Ordering code .. page 180
 5.9 Selection data sheet ... page 181
 5.10 Check sheet ... page 182
6. Linear Actuators ILA Series
 6.1 Manufacturing features ... page 185
 6.2 Technical data ... page 186
 6.3 Overall dimensions .. page 190
 6.4 Options and accessories ... page 194
 6.5 Ordering code .. page 196
 6.6 Selection data sheet .. page 197
 6.7 Check sheet ... page 198

7. Electric motors
 7.1 AC 3-phase electric motors ... page 200
 7.2 AC 1-phase electric motors ... page 200
 7.3 DC electric motors ... page 200
 7.4 Brake-motor: when it is required ... page 201

8. Additional Information
 8.1 Product nameplate .. page 202
 8.2 Conditions on delivery ... page 202
 8.3 Installation – Maintenance – Lubrication page 203
 8.4 General terms of sale ... page 203
 8.5 Lubricants ... page 204
1.1 SERVOMECH Linear actuators

SERVOMECH mechanical linear actuators are motorised mechanical cylinders able to transform the rotary motion of a motor into the linear motion of a push rod.

They are designed and manufactured for industrial applications, even the heaviest in terms of:

- applied load
- linear speed
- duty cycle
- environmental conditions.

They are able to work under push or pull load.

According to their configuration, they can be:

- statically self-locking - able to sustain static load keeping the same position when the motor is switched off;
- statically non self-locking - in this case the load must be sustained with a brake motor.

They operate at constant linear speed with and without load, with low noise level.

Their operation can be just a simple push-pull “ON-OFF” action or they can become real servomechanisms, able to work as controlled axes by means of accessories such as encoders or potentiometers for positioning control, motors with tacho-generator and servo drives.

Their installation is simple and not expensive since it requires just a front and rear hinging as for standard hydraulic and pneumatic cylinders.

Linear actuators can effectively replace pneumatic or hydraulic cylinders for several reasons:

- uniformity in push-pull motion
- accuracy in stopping position
- position holding under load (self-locking)
- energy consumption during operation only
- installation in difficult environments, only electrical control cables are required
- higher safety in load lifting (internal mechanical safety devices available)
- can be used in ambients with very low temperature without freezing risk
- can be used in ambients with very high temperature without fire risk.

SERVOMECH linear actuators have a wide application field. They are intended for industrial applications which require safe operation and/or linear motion control while moving, turning over or lifting a load.

The wide range of sizes, stroke lengths, motor types, linear speeds and available accessories enables to adapt these products for new applications, replace even complex mechanical solutions and hydraulic or pneumatic cylinders, improving the result in terms of performance and with economical advantages.

1.2 SERVOMECH linear actuators range

SERVOMECH linear actuators range consists of 5 actuator groups determined by their different design, input drive and fixing type.
1.2 SERVOMECH linear actuators range

Linear actuators **ATL Series**:
- **input drive**: worm gear drive
- **linear drive**: 1 or more starts acme screw

Linear actuators **BSA Series**:
- **input drive**: worm gear drive
- **linear drive**: ball screw

INPUT DRIVE
- **worm gear drive**

LINEAR DRIVE
- **acme screw**
- **ball screw**

<table>
<thead>
<tr>
<th>ATL Series</th>
<th>BSA Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL 20</td>
<td>BSA 20</td>
</tr>
<tr>
<td>ATL 25</td>
<td>BSA 25</td>
</tr>
<tr>
<td>ATL 28</td>
<td>BSA 28</td>
</tr>
<tr>
<td>ATL 30</td>
<td>BSA 30</td>
</tr>
<tr>
<td>ATL 40</td>
<td>BSA 40</td>
</tr>
<tr>
<td>ATL 50</td>
<td>BSA 50</td>
</tr>
<tr>
<td>ATL 63</td>
<td>BSA 63</td>
</tr>
<tr>
<td>ATL 80</td>
<td>BSA 80</td>
</tr>
<tr>
<td>ATL 100</td>
<td>BSA 100</td>
</tr>
<tr>
<td>ATL 125</td>
<td>BSA 125</td>
</tr>
</tbody>
</table>

ATL 20 - **ATL 100**
ATL 25 - **ATL 125**
ATL 28 - **ATL 80**
ATL 30
ATL 40

BSA 20 - **BSA 125**
BSA 25
BSA 30
BSA 40
BSA 50
BSA 63
BSA 80

- **Linear speed**: (1.4 ... 140) mm/s
- **Max. force**: 600 N ... 350 kN
- **Standard stroke**: up to 800 mm, special stroke length on request
- **Linear speed**: (2.3 ... 93) mm/s
- **Max. force**: 1 200 N ... 123 kN
- **Standard stroke**: up to 800 mm, special stroke length on request

Input shaft axis at 90° with respect to actuator axis

Input:
- attachment for IEC electric motor
- solid shaft

Electric motor:
- AC 3-phase or 1-phase
- DC 24 V or 12 V

Stroke end switches:
- electric switches, activated by adjustable rings along the support rod
- magnetic reed switches, adjustable position along the outer tube
- proximity switches, fix position on outer tube
- cam-operated electric switches, fix position on outer tube

Positioning control:
- rotary encoder on the input shaft
- linear potentiometer mounted parallel to the push rod

Wide range of accessories

It is possible to create drive systems consisting of two or more actuators whose input shafts are mechanically connected by transmission shafts.
1.2 SERVOMECH linear actuators range

Linear actuators **CLA Series**:
- input drive: worm gear drive
- linear drive: 1 or more starts acme screw

Linear actuators **CLB Series**:
- input drive: worm gear drive
- linear drive: ball screw

<table>
<thead>
<tr>
<th>INPUT DRIVE</th>
<th>LINEAR DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>worm gear drive</td>
<td>acme screw</td>
</tr>
</tbody>
</table>

CLA Series
- CLA 30
- CLA 40
- CLA 50

CLB Series
- CLB 30
- CLB 40
- CLB 50

Linear speed: (2 ... 56) mm/s
Max. force: 2 500 N ... 25 kN
Standard stroke up to 800 mm,
special stroke length on request
(more details on pages 108 ... 110)

Input shaft axis at 90° with respect to actuator axis

Input:
- attachment for IEC electric motor
- solid shaft

Electric motor:
- AC 3-phase or 1-phase

Stroke end switches:
- adjustable cam-operated electric switches

Positioning control:
- rotary potentiometer

Wide range of accessories

It is possible to create drive systems consisting of two or more actuators whose input shafts are mechanically connected by transmission shafts.
SERVOMECH Linear Actuators

1.2 SERVOMECH linear actuators range

Linear actuators **UBA Series**:
- input drive: timing belt transmission
- linear drive: ball screw

Linear actuators **UAL Series**:
- input drive: timing belt transmission
- linear drive: 1 or more starts acme screw

<table>
<thead>
<tr>
<th>INPUT DRIVE</th>
<th>LINEAR DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>timing belt transmission</td>
<td></td>
</tr>
</tbody>
</table>

UBA Series

- UBA 1
- UBA 2
- UBA 3
- UBA 4
- UBA 5

UAL Series

- UAL 1
- UAL 2
- UAL 3
- UAL 4
- UAL 5

Linear speed: (40 ... 875) mm/s
Max. force: (290 ... 10 650) N
Standard stroke up to 800 mm, special stroke length on request

Linear speed: (23 ... 529) mm/s
Max. force: (300 ... 10 400) N
Standard stroke up to 800 mm, special stroke length on request

Motor axis parallel to actuator axis

Input:
- attachment for IEC electric motor

Electric motor:
- AC 3-phase or 1-phase with brake
- DC 24 V or 12 V with brake

Stroke end switches:
- magnetic reed switches, adjustable position along the outer tube
- proximity switches, fix position on outer tube

Positioning control:
- rotary encoder on the input axis
- linear potentiometer mounted parallel to the push rod

Wide range of accessories
1.2 SERVOMECH linear actuators range

Linear actuators **TMA Series**:
- input drive: worm gear drive
- linear drive: 1-start acme screw

<table>
<thead>
<tr>
<th>INPUT DRIVE</th>
<th>LINEAR DRIVE</th>
<th>TMA Series</th>
</tr>
</thead>
</table>
| worm gear drive | acme screw | TMA 15
| TMA 25 | TMA 50 | TMA 100
| TMA 150 | TMA 200 |

Linear speed: (0.12 ... 40) mm/s
Max. force: (2.6 ... 200) kN
Stroke up to 1 500 mm

Trunnion mounted housing fixed with pins or bronze bushes
Input shaft axis at 90° with respect to actuator axis

Input:
- attachment for IEC electric motor
- solid shaft

Electric motor:
- AC 3-phase

Stroke end switches:
- proximity switches, fix position on outer tube
- cam-operated electric switches, fix position on outer tube

Positioning control:
- rotary encoder on the input shaft

Wide range of accessories

It is possible to create drive systems consisting of two or more actuators whose input shafts are mechanically connected by transmission shafts.
SERVOMECH Linear Actuators

1.2 SERVOMECH linear actuators range

Linear actuators **ILA Series**:
- linear drive: 1 or more starts acme screw (**ILA . A Series**)
- linear drive: ball screw (**ILA . B Series**)

<table>
<thead>
<tr>
<th>INPUT DRIVE</th>
<th>acme screw</th>
<th>ball screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILA . A Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILA 15 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILA 25 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILA 50 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILA 100 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILA 150 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILA 200 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Max. force: (15 ... 200) kN
Stroke up to 1 500 mm

IN-LINE actuators
Housing mounting with pins
Input: shaft and flange as input drive attachment
Stroke end switches:
- proximity switches, fixed position on outer tube
Wide range of accessories
1.3 Linear actuator selection

THERMAL LIMIT

Linear actuators transform the rotary motion into a linear motion. This transformation involves a dissipation of energy in the form of heat. Therefore, to choose the right actuator for an application it is necessary to take into account the APPLICATION DUTY CYCLE REQUIRED and compare it with the ACTUATOR DUTY CYCLE PERMISSIBLE.

The APPLICATION DUTY CYCLE REQUIRED $F_u [%]$ is the ratio expressed in percentage between the actual working time under load during the reference time period of 10 minutes and the reference period itself.

$$F_u [%] = \frac{\text{Working time over 10 min}}{10 \text{ min}} \times 100$$

The ACTUATOR DUTY CYCLE PERMISSIBLE $F_i [%]$ is the maximum working time expressed in percentage that the actuator can perform during the reference time period of 10 minutes, under maximum rated load stated in this catalogue at ambient temperature 25°C, without risk of internal parts overheating.

<table>
<thead>
<tr>
<th>Linear drive</th>
<th>$F_i [%]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-start acme screw</td>
<td>30</td>
</tr>
<tr>
<td>ball screw</td>
<td>100</td>
</tr>
</tbody>
</table>

For the proper operation of a linear actuator, the condition $F_u \leq F_i$ must be satisfied. Therefore, the real limit for the actuator working time is often the thermal limit and not its structural strength nor the motor power.

In order to make the right selection of an actuator we recommend following SELECTION PROCEDURE below.

LINEAR ACTUATOR SELECTION PROCEDURE

1. Identify the performances and technical specifications required by the application
 - stroke
 - linear speed
 - dynamic load, pull - push, current stroke corresponding to the max. push load value
 - static load, pull – push, current stroke corresponding to the max. push load value
 - working cycle
 - type of motor required

2. Determine the type of linear drive

 Considering the STROKE, the LINEAR SPEED and the WORKING CYCLE, calculate the APPLICATION DUTY CYCLE REQUIRED $F_u [%]$ over 10 min:
 - with $F_u \leq 30 \%$: select acme screw actuators
 - with $F_u \geq 50 \%$: select ball screw actuators
 - with $30 \% < F_u < 50 \%$ there are 2 possibilities:
 - select ball screw linear actuators, as a precaution;
 - select acme screw linear actuators, previous accurate check of the permissible load for a duty cycle higher than 30% (refer to diagram DUTY CYCLE F_i RELATED TO DYNAMIC LOAD AND SPEED on page 38).

Generally, ball screw actuators are more expensive than their equivalent with acme screw. On the other hand, the selection of acme screw actuators in case of $F_u > 30 \%$, implies a reduced performance and it is necessary to select a larger size.

Ball screw actuators are not self-locking and require a brake motor to ensure static load holding. Furthermore, a brake motor is also necessary whenever a precise positioning and stopping repeatability are required, with both ball screw and acme screw actuators.

In any case, a brake motor is required for high linear speeds.

Therefore, in this condition the choice between ball screw or acme screw actuators is influenced not only by technical factors but also by economic reasons.
SERVOMECH Linear Actuators

1.3 Linear actuator selection

3. Select the size as a 1st approximation

Referring to the force and the linear speed required by the application, use the 1st APPROXIMATION SELECTION DIAGRAMS, according to the linear drive type as determined in the previous step (see pages 17 ... 22), to select the actuator size.

4. Mechanical checks

4.1 Structural stability check

Referring to the max. push load and the stroke, check the structural stability – buckling resistance under push load - of the actuator selected in the previous step. This check should be carried out for push load and long strokes referring to diagrams on pages 23 ... 29.

4.2 Lifetime check

- Acme screw actuators

The performances stated in this catalogue are the maximum permissible, considering duty cycle $F_i = 30\%$ over a time period of 10 min and ambient temperature 25°C. Besides the load, the lifetime is strongly influenced also by the linear speed, the ambient temperature and the duty cycle. For a more precise evaluation contact SERVOMECH.

- Ball screw actuators

The performances stated in this catalogue are the maximum permissible with max. duty cycle 100%, ambient temperature 25°C and minimum lifetime $L_{10h} = 1000$ hours. For a different lifetime refer to the diagrams on pages 30 ... 38.

The previously selected size can be confirmed, otherwise the next larger size shall be selected.

5. Determine the actuator ratio

According to the required motor type, the series and the size of the selected actuator, see the relative PERFORMANCE TABLE and find the RATIO which gives the required performance in terms of LOAD and SPEED. Choose the performance nearest to those required. If necessary, select the next size to fully satisfy the required performance.

6. Check the thermal limit

- For acme screw actuators and $F_u \leq 30\%$ only: according to the working cycle, considering the actual speed of the actuator, calculate the actual DUTY CYCLE F_u and verify that it is not higher than the DUTY CYCLE F_i permissible by the selected actuator ($F_u \leq F_i$). Otherwise, considering the difference $F_u - F_i$, decide if the selection can be confirmed or if the next bigger size should be chosen.

- For acme screw actuators and $30\% < F_u < 50\%$ only: refer to diagram DUTY CYCLE F_i RELATED TO DYNAMIC LOAD AND SPEED on page 38 and check the dynamic load permissible by the selected actuator.

7. Select accessories and/or options

7.1 Front attachment
7.2 Stroke end switches
7.3 Input version
7.4 Other accessories

8. Check actuator dimensions and fixing accessories

Refer to the dimensional tables to know the over-all dimensions of the actuator and relevant accessories and verify if they suit the application.

9. Complete the ordering code

Refer to the example shown at the end of the chapter regarding the selected actuator series.
1.3 Linear actuator selection

Example 1:

1. Application data
 - stroke: 300 mm
 - linear speed: 20 mm/s
 - dynamic load: 4 500 N, push, constant along the entire stroke forward and backward
 - static load: 4 500 N, push, applied in any position of the stroke
 - working cycle: 5 complete travels (forward + backward) in 10 min
 - motor: AC 3-phase electric motor
 - application layout

2. Determination of the linear drive type
 Calculation of the DUTY CYCLE F_u [%] over 10 min:

 \[
 F_u = \frac{2 \times \text{STROKE} \times \text{Nr. of cycles over ref. time period}}{\text{LIN. SPEED} \times \text{Ref. time period}} \times 100 = \frac{2 \times 300 \text{ mm}}{20 \text{ mm/s} \times 10 \text{ min} \times 60 \text{ s/min}} \times 5 \times 100 = 25 \%
 \]

 With $F_u \leq 30 \%$, the correct selection is an acme screw actuator.

3. Size selection as a 1st approximation
 Referring to the 1st APPROXIMATION SELECTION DIAGRAMS for acme screw actuators on pages 17 ... 20:
 - considering the LINEAR SPEED of 20 mm/s select the ATL Series
 - considering the MAX. DYNAMIC LOAD of 4500 N at LINEAR SPEED of 20 mm/s select the SIZE 30.

4.1 Check of structural stability
 Referring to the diagram BUCKLING RESISTANCE UNDER PUSH LOAD for ATL Series on page 23, for PUSH LOAD of 4500 N and STROKE of 300 mm, selection of the actuator ATL 30 is CORRECT.

5. Determination of ratio
 Referring to the ACME SCREW LINEAR ACTUATORS ATL SERIES WITH AC 3-PHASE MOTOR PERFORMANCES table on page 46, the performances of the actuator ATL 30 with RATIO RN2 and 3-PHASE 0.25 kW 2-pole MOTOR

 \[
 \text{LINEAR SPEED:} \quad 23 \text{ mm/s} \quad \text{DYNAMIC LOAD:} \quad 5200 \text{ N}
 \]
 are sufficiently closed to the required performances.

6. Check of thermal limit
 $F_u \leq 30 \%$: considering the actual speed of the selected actuator, calculate the DUTY CYCLE F_u [%] over 10 min:

 \[
 F_u = \frac{2 \times 300 \text{ mm}}{23 \text{ mm/s} \times 10 \text{ min} \times 60 \text{ s/min}} \times 5 \times 100 = 22 \%
 \]

 The calculated value is lower than the duty cycle permissible by the actuator (for acme screw actuators $F_i = 30 \%$, see page 9), therefore the selection of actuator ATL 30 RN2 is CONFIRMED.

7. Accessories and/or options selection
 Select the actuator fixing attachments (see pages 54 ... 57), the input version (see page 83), the stroke end switches (see pages 88 ... 92) and/or other accessories and/or options (see page 82 and pages 93 ... 96).

8. Check of actuator dimensions
 Referring to actuator overall dimensions (see pages 54 ... 57, according to the selected stroke end switches), verify if the actuator dimensions fit to the application requirements.

9. Ordering code
 Complete the ordering code of the selected actuator referring to the example on page 97.
1.3 Linear actuator selection

Example 2:

1. **Application data**
 - stroke: 600 mm
 - linear speed: 60 mm/s
 - dynamic load: 900 N, push-pull, constant along the entire stroke forward and backward
 - static load: 900 N, push, applied in any position of the stroke
 - working cycle: 13 complete travels (forward + backward) in 10 min
 - motor: DC 24 V with brake
 - application layout

2. **Determination of the linear drive type**

 Calculation of the duty cycle $F_u [\%]$ over 10 min:
 \[
 F_u = \frac{2 \times \text{STROKE}}{\text{LIN. SPEED}} \times \frac{\text{Nr. of cycles over ref. time period}}{\text{Ref. time period}} \times 100 = \frac{2 \times 600 \text{ mm}}{60 \text{ mm/s}} \times \frac{13}{10 \text{ min} \times 60 \text{ s/min}} \times 100 = 43 \%
 \]

 With $30 \% < F_u < 50 \%$, both acme or ball screw actuator could be chosen. This example shows the selection of an acme screw actuator because the ball screw actuator, with $F_i = 100 \%$, satisfies the condition $F_u \leq F_i$.

3. **Size selection as a 1st approximation**

 Referring to the 1st approximation selection diagrams for acme screw actuators on pages 17 ... 20:
 - considering the linear speed of 60 mm/s select the **ATL Series**
 - considering the max. dynamic load of 900 N at linear speed of 60 mm/s select the **size 20**.

4.1 **Check of structural stability**

 Referring to the diagram buckling resistance under push load for **ATL Series** on page 23, for push load of 900 N and stroke of 600 mm selection of the actuator **ATL 20** is correct.

5. **Determination of ratio**

 Referring to the acme screw linear actuators **ATL Series with DC motor performances** table on page 49, the performances of the actuator **ATL 20** with ratio RV2 and DC motor 24 V 100 W 3000 rpm
 - Linear speed: 64 mm/s
 - Dynamic load: 920 N

 are sufficiently closed to the required performances.

6. **Check of thermal limit**

 $30 \% < F_u < 50 \%$: referring to the diagram duty cycle F_i related to dynamic load and speed on page 38, the max. dynamic load permissible with condition $F_i = F_u = 43 \%$ is:
 \[
 0.7 \times 920 = 640 \text{ N}
 \]

 The calculated value is lower than the dynamic load required by the application, therefore the selection of the actuator **ATL 20 RV2** is not correct.

5.bis **Determination of ratio**

 Back to the acme screw linear actuators **ATL Series with DC motor performances** table on page 49, select the actuator **next larger size**, **ATL 25** with ratio RV2 and with DC motor 24 V 150 W 3000 rpm with performances
 - Linear speed: 64 mm/s
 - Dynamic load: 1330 N

 which are sufficiently closed to the required performances.
1.3 Linear actuator selection

Example 2 (continuation):

6.bis Check of thermal limit

30 % < F_u < 50 %: referring to the diagram DUTY CYCLE F_1 RELATED TO DYNAMIC LOAD AND SPEED on page 38, the max. dynamic load permissible with condition $F_1 = F_u = 43$ % is:

$$0.7 \times 1330 = 930 \text{ N}$$

The resulting value is higher than the dynamic load required by the application, therefore the selection of the actuator ATL 25 RV2 is **correct**.

Considering now the actual speed of the selected actuator, the DUTY CYCLE F_u [%] over 10 min is

$$F_u = \frac{2 \times 600 \text{ mm}}{64 \text{ mm/s}} \times \frac{13 \text{ min}}{60 \text{ s/min}} \times 100 = 41\%$$

Being this value remained within the limits 30 % < F_u < 50 %, the selection of the actuator ATL 25 RV2 is **confirmed**.

7. Accessories and/or options selection

Select the actuator fixing attachments (see pages 58 ... 61), the input version (see page 83), the stroke end switches (see pages 88 ... 92) and/or other accessories and/or options (see page 82 and pages 93 ... 96).

8. Check of actuator dimensions

Referring to actuator overall dimensions (see pages 58 ... 61, according to the selected stroke end switches), verify if the actuator dimensions fit to the application requirements.

9. Ordering code

Complete the ordering code of the selected actuator referring to the example on page 97.

NOTE: Due to the quite high linear speed, it is necessary to use a brake-motor.
1.3 Linear actuator selection

Example 3:

1. Application data
 - stroke: 500 mm
 - linear speed: 125 mm/s
 - dynamic load: 1800 N, push - pull, constant along the entire stroke forward and backward
 - static load: not present
 - working cycle: 50 complete travels (forward + backward) in 10 min
 - required lifetime: 3000 hours of work under load
 - motor: AC 3-phase with brake
 - application layout

2. Determination of the linear drive type

 Calculation of the duty cycle $F_u [%]$ over 10 min:

 $F_u = \frac{2 \times \text{STROKE}}{\text{LIN. SPEED}} \times \frac{\text{Nr. of cycles over ref. time period}}{\text{Ref. time period}} \times 100 = \frac{2 \times 500 \text{ mm}}{125 \text{ mm/s}} \times \frac{50}{10 \text{ min} \times 60 \text{ s/min}} \times 100 = 67 \%$

 With $F_u = 67 \%$, the correct selection is a ball screw actuator.

3. Size selection as a 1st approximation

 Referring to the 1st APPROXIMATION SELECTION DIAGRAMS for ball screw actuators on pages 21 ... 22:
 - considering the linear speed of 125 mm/s select the UBA Series
 - considering the max. dynamic load of 1800 N at linear speed of 125 mm/s select the size 2.

4.1 Check of structural stability

 Referring to the diagram BUCKLING RESISTANCE UNDER PUSH LOAD for UBA Series on page 26, for push load of 1800 N and stroke of 500 mm, selection of the actuator UBA 2 is correct.

4.2 Lifetime check

 Referring to the diagram BALL SCREW LIFETIME for ball screw BS 16×5 on page 33, the lifetime of this ball screw with load 1800 N and linear speed 125 mm/s is lower than required 3000 hours, therefore the actuator UBA 2 is not correct for the application.

4.2 bis Lifetime check

 Select the next larger actuator size: UBA 3. Referring to the diagram BALL SCREW LIFETIME for ball screw BS 20×5 on page 34, the lifetime of this ball screw with load 1800 N and linear speed 125 mm/s is higher than required 3000 hours, therefore the actuator UBA 3 is correct for the application.

5. Determination of ratio

 Referring to the BALL SCREW LINEAR ACTUATORS UBA SERIES WITH AC 3-PHASE MOTOR PERFORMANCES table on page 130, the performances of the actuator ATL 20 with ratio RN1 and with 3-PHASE MOTOR 0.55 kW 2-pole linear speed: 115 mm/s dynamic load: 2750 N are sufficiently closed to the required performances.

7. Accessories and/or options selection

 Select the actuator fixing attachments (see pages 136 ... 137) and/or other accessories and/or options (see pages 146 and 151).

8. Check of actuator dimensions

 Referring to actuator overall dimensions (see pages 136 ... 137, according to the selected stroke end switches), verify if the actuator dimensions fit to the application requirements.

9. Ordering code

 Complete the ordering code of the selected actuator referring to the example on page 152.

 NOTE: Due to the high linear speed, it is necessary to use a brake-motor.
1.3 Linear actuator selection

Example 4:

1. Application data
 - stroke: 1200 mm
 - linear speed: 0.4 mm/s
 - dynamic load: 50 kN, push, constant along the entire stroke forward and backward
 - static load: 95 kN, push, applied in any position of the stroke
 - working cycle: 1 (one) travel of 8 mm every 5 min
 - motor: AC 3-phase

2. Determination of the linear drive type
 Calculation of the Duty Cycle F_u [%] over 10 min:

 \[
 F_u = \frac{2 \times \text{STROKE}}{\text{LIN. SPEED}} \times \frac{\text{Nr. of cycles over ref. time period}}{\text{Ref. time period}} \times 100 = \frac{2 \times 8 \text{ mm}}{0.4 \text{ mm/s}} \times \frac{1}{2 \times 5 \text{ min} \times 60 \text{ s/min}} \times 100 = 6.7 \%
 \]

 With $F_u \leq 30 \%$, the correct selection is an acme screw actuator.

3. Size selection as a 1st approximation
 Referring to the 1st approximation selection diagrams for acme screw actuators on pages 17 ... 20:
 - considering the linear speed of 0.4 mm/s select the TMA Series
 - considering the max. dynamic load of 50 kN at linear speed of 0.4 mm/s select the size 50

4. Check of structural stability
 Referring to the diagram buckling resistance under push load for TMA Series on page 27, for push load of 95 kN is higher than the max. load permissible by the actuator TMA 50, therefore the selection is NOT CORRECT for the application.

4.1 bis Check of structural stability
 Select the next larger size: TMA 100. Referring to the diagram buckling resistance under push load for TMA Series on page 27, for push load of 95 kN at stroke of 1200 mm the selection of the actuator TMA 100 IS CORRECT.

5. Determination of ratio
 Referring to the ACME SCREW LINEAR ACTUATORS TMA SERIES PERFORMANCES table on page 161, the performances of the actuator TMA 100 with RATIO RL1, with input gear drive I 40 R20 and 3-PHASE MOTOR 0.37 kW 4-pole

 \[
 \text{LINEAR SPEED: } 0.38 \text{ mm/s} \quad \text{DYNAMIC LOAD: } 100 \text{ kN}
 \]

 are sufficiently closed to the required performances.

6. Check of thermal limit
 In case of a Duty Cycle F_u [%] over 10 min value low as in this example, the check of the thermal limit can be omitted.

7. Accessories and/or options selection
 Select the actuator configuration (see pages 162 ... 163), the actuator fixing attachments (see pages 164 ... 171) and/or other accessories and/or options (see pages 177 ... 178).

8. Check of actuator dimensions
 Referring to actuator overall dimensions (see pages 164 ... 171 according to the selected configuration) verify if the actuator dimensions fit to the application requirements.

9. Ordering code
 Complete the ordering code of the selected actuator referring to the example on page 180.
1.3 Linear actuator selection

Example 5:

1. **Application data**
 - stroke: 600 mm
 - linear speed: 400 mm/s
 - dynamic load: 4 500 N, push - pull, constant along the entire stroke forward and backward
 - static load: not present
 - working cycle: continuous work
 - motor: servo-motor, in line with the actuator linear drive
 - required lifetime: 3 000 hours of work under 4 500 N load
 - application layout

2. **Determination of the linear drive type**
 Considering the continuous working cycle ($F_u = 100\%$), select a ball screw actuator.

3. **Size selection**
 Referring to the diagram concerning the ball screw lifetime related to load and linear speed (see pages 33 ... 38), considering the max. dynamic load of 4500 N, the linear speed of 400 mm/s and the required lifetime of 3000 hours, select the ball screw BS 32×10 and therefore linear actuator ILA 25 B.

4.1 **Check of structural stability**
 Referring to the diagram buckling resistance under push load for ILA . B Series on page 29, with push load 4500 N and stroke 600 mm the selection of the actuator ILA 25 B is correct.

7. **Accessories and/or options selection**
 Select the actuator fixing attachments (see pages 192 ... 193), specify the input dimensions (see pages 192 ... 193) and/or other accessories and/or options (see pages 194 ... 195).

8. **Check of actuator dimensions**
 Referring to actuator overall dimensions (see pages 192 ... 193), verify if the actuator dimensions fit to the application requirements.

9. **Ordering code**
 Complete the ordering code of the selected actuator referring to the example on page 196.
1.4 1st approximation selection diagrams
related to linear speed, dynamic load and THERMAL LIMIT

Acme screw linear actuators
ATL Series, size 20 ... 40

Acme screw linear actuators
ATL Series, size 50 ... 125
SERVOMECH Linear Actuators

1.4 1st approximation selection diagrams
related to linear speed, dynamic load and THERMAL LIMIT

Acme screw linear actuators
CLA Series

Dynamic load [kN]

1 2 3 4 5 8 10 20 30 40 50 80 100 200 300 500 700 1000

Linear speed [mm/s]

CLA 50
CLA 40
CLA 30

Acme screw linear actuators
UAL Series

Dynamic load [kN]

1 2 3 4 5 8 10 20 30 40 50 80 100 200 300 500 700 1000

Linear speed [mm/s]

UAL 5
UAL 4
UAL 3
UAL 2
UAL 1

1.4 1st approximation selection diagrams
related to linear speed, dynamic load and THERMAL LIMIT

Acme screw linear actuators
CLA Series

Dynamic load [kN]

1 2 3 4 5 8 10 20 30 40 50 80 100 200 300 500 700 1000

Linear speed [mm/s]

CLA 50
CLA 40
CLA 30

Acme screw linear actuators
UAL Series

Dynamic load [kN]

1 2 3 4 5 8 10 20 30 40 50 80 100 200 300 500 700 1000

Linear speed [mm/s]

UAL 5
UAL 4
UAL 3
UAL 2
UAL 1
1.4 1st approximation selection diagrams
related to linear speed, dynamic load and THERMAL LIMIT
SERVOMECH Linear Actuators

1.4 1st approximation selection diagrams related to linear speed, dynamic load and THERMAL LIMIT

Acme screw linear actuators
ILA 15 A ... ILA 50 A

Dynamic load [kN]

Acme screw linear actuators
ILA 100 A ... ILA 200 A

Dynamic load [kN]
1.4 1st approximation selection diagrams
related to linear speed, dynamic load and ball screw load capacity

Ball screw linear actuators
BSA Series, size 20 ... 40

Ball screw linear actuators
BSA Series, size 50 ... 125
SERVOMECH Linear Actuators

1.4 1st approximation selection diagrams
related to linear speed, dynamic load and ball screw load capacity

Ball screw linear actuators
CLB Series

Ball screw linear actuators
UBA Series
1.5 Buckling resistance under push load - Euler III diagrams

Acme screw linear actuators ATL Series

![Diagram showing buckling resistance under push load for ATL Series actuators.](image-url)
1.5 Buckling resistance under push load - Euler III diagrams
Ball screw linear actuators BSA Series

Safety factor = 3

STROKE

LOAD

Load [kN] vs Stroke [mm] for different sizes of BSA actuators: BSA 20, BSA 25, BSA 28, BSA 30, BSA 40. Each line represents a different load capacity with a safety factor of 3.
1.5 Buckling resistance under push load - Euler III diagrams

Acme screw linear actuators **CLA Series**
Ball screw linear actuators **CLB Series**

Graphs showing load vs. stroke for CLA and CLB series actuators.

Safety factor = 3
SERVOMECH Linear Actuators

1.5 Buckling resistance under push load - Euler III diagrams

Acme screw linear actuators UAL Series
Ball screw linear actuators UBA Series

Safety factor = 3
1.5 Buckling resistance under push load - Euler II diagrams
Acme screw linear actuators TMA Series

LOAD

Safety factor = 3

Acme screw length, L [mm]

Load [kN]
1.5 Buckling resistance under push load - Euler III diagrams

Acme screw linear actuators ILA . A Series

Safety factor = 3
1.5 Buckling resistance under push load - Euler III diagrams

Ball screw linear actuators ILA . B Series

Safety factor = 3
1.6 Ball screw lifetime – performed stroke related to load

<table>
<thead>
<tr>
<th>BALL SCREW</th>
<th>ball [mm]</th>
<th>n° of circuits</th>
<th>C_a [kN]</th>
<th>C_{0a} [kN]</th>
<th>CURVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 14x5</td>
<td>3.175</td>
<td>2</td>
<td>6.6</td>
<td>8.6</td>
<td>A</td>
</tr>
<tr>
<td>BS 14x10</td>
<td>3.175</td>
<td>2</td>
<td>6.9</td>
<td>9.3</td>
<td>B</td>
</tr>
<tr>
<td>BS 16x5</td>
<td>3.175</td>
<td>3</td>
<td>10.4</td>
<td>15.6</td>
<td>C</td>
</tr>
<tr>
<td>BS 16x10</td>
<td>3.175</td>
<td>4</td>
<td>13.4</td>
<td>20.9</td>
<td>E</td>
</tr>
<tr>
<td>BS 20x5</td>
<td>3.175</td>
<td>3</td>
<td>11.3</td>
<td>18</td>
<td>F</td>
</tr>
<tr>
<td>BS 20x10</td>
<td>3.175</td>
<td>3</td>
<td>12.9</td>
<td>23.5</td>
<td>G</td>
</tr>
<tr>
<td>BS 25x6</td>
<td>3.969</td>
<td>3</td>
<td>17.4</td>
<td>30.5</td>
<td>H</td>
</tr>
<tr>
<td>BS 25x10</td>
<td>3.969</td>
<td>3</td>
<td>18</td>
<td>33</td>
<td>I</td>
</tr>
</tbody>
</table>
1.6 Ball screw lifetime – performed stroke related to load

<table>
<thead>
<tr>
<th>BALL SCREW</th>
<th>ball [mm]</th>
<th>n° of circuits</th>
<th>C₀ [kN]</th>
<th>C₀₀ [kN]</th>
<th>CURVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 32×10</td>
<td>6.35</td>
<td>4</td>
<td>41.8</td>
<td>73</td>
<td>J</td>
</tr>
<tr>
<td>BS 32×20</td>
<td>6.35</td>
<td>3</td>
<td>32.2</td>
<td>53</td>
<td>J</td>
</tr>
<tr>
<td>BS 40×10</td>
<td>6.35</td>
<td>5</td>
<td>60</td>
<td>123</td>
<td>L</td>
</tr>
<tr>
<td>BS 40×20</td>
<td>6.35</td>
<td>3</td>
<td>38.5</td>
<td>74</td>
<td>K</td>
</tr>
<tr>
<td>BS 50×10</td>
<td>6.35</td>
<td>5</td>
<td>83</td>
<td>188</td>
<td>M</td>
</tr>
<tr>
<td>BS 50×20</td>
<td>6.35</td>
<td>4</td>
<td>65</td>
<td>140</td>
<td>M</td>
</tr>
</tbody>
</table>
1.6 Ball screw lifetime – performed stroke related to load

<table>
<thead>
<tr>
<th>BALL SCREW</th>
<th>ball [mm]</th>
<th>n° of circuits</th>
<th>C_a [kN]</th>
<th>C_0a [kN]</th>
<th>CURVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 63×10</td>
<td>7.144</td>
<td>6</td>
<td>112</td>
<td>313</td>
<td>N</td>
</tr>
<tr>
<td>BS 63×20</td>
<td>9.525</td>
<td>4</td>
<td>101</td>
<td>220</td>
<td>O</td>
</tr>
<tr>
<td>BS 80×16</td>
<td>9.525</td>
<td>5</td>
<td>149</td>
<td>393</td>
<td>P</td>
</tr>
<tr>
<td>BS 80×20</td>
<td>12.7</td>
<td>5</td>
<td>213</td>
<td>516</td>
<td>R</td>
</tr>
<tr>
<td>BS 100×16</td>
<td>9.525</td>
<td>5</td>
<td>170</td>
<td>523</td>
<td>Q</td>
</tr>
<tr>
<td>BS 100×20</td>
<td>12.7</td>
<td>4</td>
<td>239</td>
<td>687</td>
<td>S</td>
</tr>
</tbody>
</table>
1.7 Ball screw lifetime related to load and linear speed

- **BS 14×5**
 - Ball: 3.175 mm
 - i = 2 circuits
 - \(C_p = 6.6 \text{ kN} \)
 - \(C_{tu} = 8.6 \text{ kN} \)

- **BS 14×10**
 - Ball: 3.175 mm
 - i = 2 circuits
 - \(C_p = 6.9 \text{ kN} \)
 - \(C_{tu} = 9.3 \text{ kN} \)

- **BS 16×5**
 - Ball: 3.175 mm
 - i = 3 circuits
 - \(C_p = 10.4 \text{ kN} \)
 - \(C_{tu} = 15.6 \text{ kN} \)

- **BS 16×5**
 - Ball: 3.175 mm
 - i = 4 circuits
 - \(C_p = 13.4 \text{ kN} \)
 - \(C_{tu} = 20.9 \text{ kN} \)
1.7 Ball screw lifetime related to load and linear speed

![Graph showing the relationship between load and linear speed for different ball screws.](image)

- **BS 16×10**
 - Ball: 3.175 mm
 - i = 3 circuits
 - \(C_v = 11.3 \text{ kN} \)
 - \(C_m = 18 \text{ kN} \)

- **BS 20×5**
 - Ball: 3.175 mm
 - i = 3 circuits
 - \(C_v = 12 \text{ kN} \)
 - \(C_m = 21.2 \text{ kN} \)

- **BS 20×10**
 - Ball: 3.175 mm
 - i = 3 circuits
 - \(C_v = 12.9 \text{ kN} \)
 - \(C_m = 23.5 \text{ kN} \)
1.7 Ball screw lifetime related to load and linear speed

SERVOMECH Linear Actuators

- **BS 25×6**
 - Ball: 3.969 mm
 - i: 3 circuits
 - \(C_0 = 17.4 \text{ kN}\)
 - \(C_{tu} = 30.5 \text{ kN}\)

- **BS 25×10**
 - Ball: 3.969 mm
 - i: 3 circuits
 - \(C_0 = 18 \text{ kN}\)
 - \(C_{tu} = 33 \text{ kN}\)

- **BS 32×10**
 - Ball: 6.35 mm
 - i: 4 circuits
 - \(C_0 = 41.8 \text{ kN}\)
 - \(C_{tu} = 73 \text{ kN}\)

- **BS 32×20**
 - Ball: 6.35 mm
 - i: 3 circuits
 - \(C_0 = 32.2 \text{ kN}\)
 - \(C_{tu} = 53 \text{ kN}\)
1.7 Ball screw lifetime related to load and linear speed

SERVOMECH Linear Actuators

- **BS 40×10**
 - Ball: 6.35 mm
 - Circuits: 5
 - Load: 83 kN
 - Load at 1000 h: 123 kN

- **BS 40×20**
 - Ball: 6.35 mm
 - Circuits: 3
 - Load: 38.5 kN
 - Load at 1000 h: 74 kN

- **BS 50×10**
 - Ball: 6.35 mm
 - Circuits: 5
 - Load: 60 kN
 - Load at 1000 h: 120 kN

- **BS 50×20**
 - Ball: 6.35 mm
 - Circuits: 4
 - Load: 65 kN
 - Load at 1000 h: 140 kN
SERVOMECH Linear Actuators

1.7 Ball screw lifetime related to load and linear speed

![Graphs showing the relationship between load, linear speed, and ball screw lifetime for different configurations of SERVOMECH Linear Actuators. The graphs display the ball screw lifetime (L₁₀h) in hours for various loads and linear speeds, with specific details for each configuration, including ball diameter, number of circuits, and load capacity.]

- BS 63×10
 - ball = 7.144 mm
 - i = 6 circuits
 - C₀ = 112 kN
 - C₀₀ = 313 kN
 - L₁₀h = 1000 h, 2000 h, 3000 h, 4000 h, 5000 h

- BS 63×20
 - ball = 9.525 mm
 - i = 4 circuits
 - C₀ = 101 kN
 - C₀₀ = 220 kN
 - L₁₀h = 1000 h, 2000 h, 3000 h, 4000 h, 5000 h

- BS 80×16
 - ball = 9.525 mm
 - i = 5 circuits
 - C₀ = 149 kN
 - C₀₀ = 393 kN
 - L₁₀h = 1000 h, 2000 h, 3000 h, 4000 h, 5000 h

- BS 80×20
 - ball = 12.7 mm
 - i = 5 circuits
 - C₀ = 213 kN
 - C₀₀ = 516 kN
 - L₁₀h = 1000 h, 2000 h, 3000 h, 4000 h, 5000 h
1.7 Ball screw lifetime related to load and linear speed

![Graph showing ball screw lifetime related to load and linear speed for BS 100×16 and BS 100×20.](image)

1.8 Actuator duty cycle permissible F_i related to dynamic load and speed

![Graph showing actuator duty cycle permissible F_i related to dynamic load and speed.](image)

<table>
<thead>
<tr>
<th>CURVE</th>
<th>Reference linear speed [mm/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
</tr>
<tr>
<td>E</td>
<td>75</td>
</tr>
<tr>
<td>F</td>
<td>100</td>
</tr>
<tr>
<td>G</td>
<td>200</td>
</tr>
<tr>
<td>H</td>
<td>400</td>
</tr>
</tbody>
</table>

F - dynamic load required by the application
F_d - dynamic load stated in the actuator performance table
1.9 Self-locking conditions

A linear actuator is self-locking when:
- it is not running and, even when a push or pull load is applied on the push rod, it does not start running before the electric motor is switched on (statically self-locking);
- it is running and, after the electric motor is switched off it stops, even when a push or pull load is applied on the push rod (dynamically self-locking).

Self-locking or non self-locking conditions are defined for the following 4 different situations:

1) **Statically self-locking**: not running actuator, conditions without load vibrations; when applying a push or pull load (up to the maximum load permissible) the actuator does not start moving.
This self-locking condition occurs whenever the self-locking coefficient\(^1\) is lower than 0.35.

2) **Dynamically self-locking**:
 2.1) Actuator in motion, the load direction is opposite to its running direction: by switching the motor off, the actuator stops (self-lock).
 This self-locking condition occurs whenever the self-locking coefficient\(^1\) is lower than 0.30.
 2.2) Actuator in motion, its running direction and the load applied has got the same direction: by switching the motor off, the actuator stop is not guaranteed. The actuator stops only if its self-locking coefficient\(^1\) is lower than 0.25 and in any case not always in the same position.
 In the above condition the use of a brake-motor is recommended to stop the actuator under load and to lock it on that position, avoiding an unexpected start in case of vibrations or load shocks.

3) **Uncertain locking**: with self-locking coefficient\(^1\) between 0.35 and 0.55, the actuators are in an uncertain locking condition. The self-locking condition depends on the load entity and on the system inertia.
 The use of a brake motor is recommended to ensure a self-locking condition. If necessary, contact SERVOMECH for a technical evaluation of the application.

4) **Non self-locking**: with self-locking coefficient\(^1\) higher than 0.55 the actuators are never self-locking.
 Note that even non self-locking actuators require a minimal push or pull force to start moving. The evaluation of this force value shall be done with SERVOMECH Engineering Dpt.

<table>
<thead>
<tr>
<th>SELF-LOCKING</th>
<th>UNCERTAIN LOCKING</th>
<th>NON SELF-LOCKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.35</td>
<td>0.55</td>
</tr>
</tbody>
</table>

\(^1\) Values of the self-locking coefficient are stated in the relevant PERFORMANCES TABLES.
7.1 **AC 3-phase electric motors**

AC asynchronous 3-phase motors, totally enclosed, fan-cooled, with or without brake, made by Italian manufacturers according to IEC standards.

Dynamically balanced rotor, high pressure die-casting housing with fins in aluminium alloy.

Standard: insulation class F, protection class IP 55.

On request: insulation class H and/or higher protection class.

On request: tropicalised winding for ambient with high temperature and humidity.

On request: thermal protection devices.

On request: brake motor.

For more technical information and details, please, refer to manufacturers catalogue.

7.2 **AC 1-phase electric motors**

AC asynchronous 1-phase motors, totally enclosed, fan-cooled, with or without brake, made by an Italian manufacturer according to IEC standards.

Dynamically balanced rotor, high pressure die-casting housing with fins in aluminium alloy.

Balanced stator windings for clockwise and anti-clockwise running without vibrations. Condenser supplied with motor, with increased capacity for higher starting torque.

Standard: insulation class F, protection class IP 55.

On request: insulation class H and/or higher protection class.

On request: thermal protection devices.

Performances with 50 Hz 230 V power supply:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09 kW</td>
<td>0.64</td>
<td>1.6</td>
<td>1.03</td>
<td>1.9</td>
<td>12.5</td>
<td>3</td>
<td>3.7</td>
</tr>
<tr>
<td>0.12 kW</td>
<td>0.43</td>
<td>2.6</td>
<td>0.71</td>
<td>3.7</td>
<td>12.5</td>
<td>3</td>
<td>3.7</td>
</tr>
<tr>
<td>0.18 kW</td>
<td>1.31</td>
<td>1.9</td>
<td>1.37</td>
<td>3.2</td>
<td>16</td>
<td>4.2</td>
<td>5.5</td>
</tr>
<tr>
<td>0.25 kW</td>
<td>0.84</td>
<td>2.1</td>
<td>0.97</td>
<td>6.3</td>
<td>20</td>
<td>5</td>
<td>5.9</td>
</tr>
<tr>
<td>0.37 kW</td>
<td>2.64</td>
<td>2.8</td>
<td>2.82</td>
<td>6.1</td>
<td>25</td>
<td>7.2</td>
<td>7.3</td>
</tr>
<tr>
<td>0.55 kW</td>
<td>1.88</td>
<td>3.9</td>
<td>1.66</td>
<td>11.2</td>
<td>30</td>
<td>7</td>
<td>7.8</td>
</tr>
</tbody>
</table>

1) mass of motor WITHOUT brake
2) mass of motor WITH brake

MOTOR BRAKE: normally closed mechanical brake, activated by a direct current electromagnet 205 V DC, powered by a rectifier in the terminal box (input voltage 230 V AC - output voltage 205 V DC).

Brake powered separately: wire terminals into the terminal box.

<table>
<thead>
<tr>
<th>MOTOR</th>
<th>BRAKING TORQUE [Nm]</th>
<th>CURRENT [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09 kW</td>
<td>1.8</td>
<td>0.05</td>
</tr>
<tr>
<td>0.12 kW</td>
<td>1.8</td>
<td>0.05</td>
</tr>
<tr>
<td>0.18 kW</td>
<td>4</td>
<td>0.09</td>
</tr>
<tr>
<td>0.25 kW</td>
<td>4</td>
<td>0.09</td>
</tr>
<tr>
<td>0.37 kW</td>
<td>4</td>
<td>0.09</td>
</tr>
<tr>
<td>0.55 kW</td>
<td>4</td>
<td>0.09</td>
</tr>
</tbody>
</table>

AC 1-phase motors for 60 Hz 110 V are available on request.

7.3 **DC electric motors**

DC motors with high coercive ferrite permanent magnet field, without fan, made by Italian manufacturers.

Standard: insulation class F, protection class IP 54.

On request: higher protection class.

On request: motor without fan with brake.
SERVOMECH Linear Actuators

Performances at nominal voltage:

<table>
<thead>
<tr>
<th>MOTOR (nominal power)</th>
<th>100 W</th>
<th>150 W</th>
<th>300 W</th>
<th>500 W</th>
<th>750 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage [V]</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>90</td>
</tr>
<tr>
<td>Nominal speed [rpm]</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>0.32</td>
<td>0.48</td>
<td>0.96</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Max. torque [Nm]</td>
<td>1.6</td>
<td>2.4</td>
<td>4.8</td>
<td>5.7</td>
<td>12</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>5.5</td>
<td>8.3</td>
<td>15.6</td>
<td>25</td>
<td>10.6</td>
</tr>
<tr>
<td>Max. current [A]</td>
<td>27.7</td>
<td>41.7</td>
<td>78</td>
<td>89</td>
<td>53</td>
</tr>
<tr>
<td>Resistance [Ω]</td>
<td>0.4</td>
<td>0.29</td>
<td>0.16</td>
<td>0.1</td>
<td>0.71</td>
</tr>
<tr>
<td>Inductance [mH]</td>
<td>0.8</td>
<td>0.73</td>
<td>0.32</td>
<td>0.13</td>
<td>4.6</td>
</tr>
<tr>
<td>Mass of motor WITHOUT brake [kg]</td>
<td>2.9</td>
<td>3.5</td>
<td>5.3</td>
<td>8</td>
<td>9.4</td>
</tr>
</tbody>
</table>

MOTOR BRAKE: normally closed mechanical brake, activated by electromagnet. Brake powered separately, with wire terminals into the terminal box.

<table>
<thead>
<tr>
<th>MOTOR</th>
<th>BRAKING TORQUE [Nm]</th>
<th>VOLTAGE [V]</th>
<th>CURRENT [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 W</td>
<td>1.7</td>
<td>24 ... 180</td>
<td>0.5</td>
</tr>
<tr>
<td>150 W</td>
<td>1.7</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>300 W</td>
<td>1.7</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>500 W</td>
<td>2</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>750 W</td>
<td>8</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Motor dimensions:

7.4 Brake motor: when it is required
- Ball screw linear actuators UBA Series: supplied as standard
- Ball screw linear actuators BSA Series and CLB series: on request, anyway it is always recommended
- Acme screw linear actuators UAL Series: on request
 - to help the actuator in stopping
 - to ensure positioning accuracy
 - to sustain the static load when the self-locking coefficient > 0.3
- Acme screw linear actuator ATL Series, CLA Series and TMA Series: on request
 - to ensure positioning accuracy
 - to sustain the static load when the self-locking coefficient > 0.3
8.1 Product nameplate
Every SERVOMECH linear actuator is provided with a nameplate, as shown below, which allows the product identification and gives technical information about the product.

1) Product code: is an alphanumeric code stating the type, size, ratio, version and stroke end switches of the linear actuator;
2) Ratio: is the ratio of the input drive;
3) Stroke length: is the stroke length in millimetres achievable by the actuator;
4) Linear speed: is the linear speed expressed in mm/s when the actuator is provided with electric motor; for an actuator without motor, this field is blank;
5) Delivery date: is the week/year of assembly (example: 30/13 = week 30 / year 2013) which usually coincides with the delivery date; this date is considered as reference for the warranty period;
6) Serial number: is the identification number of the actuator which identifies the exact design of the product even after a long time; the serial number is the essential reference for spare part orders.

8.2 Conditions on delivery
If not otherwise specific required, SERVOMECH linear actuators are supplied with the following conditions:

- lubrication: according to the tables on page 204 and 205; in case of particular application requirements (ambient temperature, food industry, environment with ionizing radiations, environment that requires biodegradable lubricants), a suitable lubricant can be supplied for the specific environment (for more details, please, contact SERVOMECH); on request, actuators can be supplied with the lubricant agreed with the customer;
- painting: all outer surfaces of the actuator that can be subject to rust are painted with 1 epoxy coating blue colour RAL 5010; on request, the painting can be done with specific colours and specification agreed with the customer with separate quotation;
- shaft protection: input shafts are protected with removable plastic covers;
- packaging: the kind of packaging is agreed with the customer based on quantity of the products, final destination and means of transport; packaging is not included in selling price.
8.3 Installation - Maintenance - Lubrication

Transport and handling
It is recommended to handle the linear actuators with particular care and attention during transportation and handling to avoid damage on mechanical parts and/or accessories and to prevent any risk to the personnel in charge of such operations. The package should be handled in the safest way during transport and handling. In case of doubt, please, contact SERVOMECH S.p.A. to get the correct instructions and prevent any kind of damage!

Storage
During storage, linear actuators shall be protected against atmospheric agents and dust or other pollution to the push rod, moving parts and attachments.
In case of long storage periods, for example more than 6 months, it is necessary to move the input shafts to avoid damaging of the ring seals. Furthermore, all non-painted parts should be maintained properly lubricated to prevent oxidation.

Installation
Linear actuators must be installed to work with push or pull axial load only, lateral and radial loads are not allowed. The front and rear fixing attachments must be aligned.
The installation of two or more actuators, connected to work in synchronized movement, requires particular attention on the following two aspects:
• alignment of the load support points;
• use of connecting shaft and couplings with high torsional rigidity to ensure a perfect synchronism of all points of support.

Commissioning and use
SERVOMECH linear actuators are supplied with the type and quantity of lubricant specified in the relevant table.
Before actuator commissioning and activation, the following checks must be carried out:
• verify the motor shaft turning direction and the related push rod travelling direction;
• verify the stroke end switches position: the given limits cannot be exceeded;
• check the right connection of the electric motor (direction of rotation and motor supply voltage) and, if it is the case, of the mechanical transmission.
During commissioning and tests, do not exceed the **ACTUATOR DUTY CYCLE PERMISSIBLE** $F_i [%]$! Any misuse can cause over-heating and premature damage.

Maintenance
Scheduled maintenance shall be carried out on linear actuators depending on the relevant use and environment conditions.
The gearbox of the linear actuator is long-life lubricated. Additional lubrication should be done only in case of verified leakage of lubricant.
For further information about installation and maintenance, please refer to the linear actuators Use and Maintenance Manual.

8.4 General terms of sale
The products are supplied by SERVOMECH S.p.A. according to the **General terms of sale** available on the web-site www.servomech.it or upon request to the sales dept. (sales@servomech.it). The acceptance of our order confirmation implies also the acceptance of our **General terms of sale**.
8.5 Lubricants

Linear actuators ATL Series

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th>INPUT DRIVE</th>
<th>LINEAR DRIVE</th>
<th>for actuator C100</th>
<th>for each additional 100 mm of stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL 20</td>
<td>0.03 kg</td>
<td>0.02 kg</td>
<td>0.02 kg</td>
<td></td>
</tr>
<tr>
<td>ATL 25</td>
<td>0.03 kg</td>
<td>0.03 kg</td>
<td>0.025 kg</td>
<td></td>
</tr>
<tr>
<td>ATL 28</td>
<td>0.03 kg</td>
<td>0.03 kg</td>
<td>0.025 kg</td>
<td></td>
</tr>
<tr>
<td>ATL 30</td>
<td>0.04 kg</td>
<td>0.04 kg</td>
<td>0.03 kg</td>
<td></td>
</tr>
<tr>
<td>ATL 40</td>
<td>0.05 kg</td>
<td>0.05 kg</td>
<td>0.04 kg</td>
<td></td>
</tr>
<tr>
<td>ATL 50</td>
<td>0.35 kg</td>
<td>0.065 kg</td>
<td>0.05 kg</td>
<td></td>
</tr>
<tr>
<td>ATL 63</td>
<td>0.75 kg</td>
<td>0.1 kg</td>
<td>0.08 kg</td>
<td></td>
</tr>
<tr>
<td>ATL 80</td>
<td>1.5 kg</td>
<td>0.15 kg</td>
<td>0.12 kg</td>
<td></td>
</tr>
<tr>
<td>ATL 100</td>
<td>2.5 kg</td>
<td>0.20 kg</td>
<td>0.13 kg</td>
<td></td>
</tr>
<tr>
<td>ATL 125</td>
<td>5.2 kg</td>
<td>0.25 kg</td>
<td>0.15 kg</td>
<td></td>
</tr>
</tbody>
</table>

- grease: AGIP Grease SLL 00
- grease: AGIP Grease SM2

Linear actuators BSA Series

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th>INPUT DRIVE</th>
<th>LINEAR DRIVE</th>
<th>for actuator C100</th>
<th>for each additional 100 mm of stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA 20</td>
<td>0.03 kg</td>
<td>0.01 kg</td>
<td>0.01 kg</td>
<td></td>
</tr>
<tr>
<td>BSA 25</td>
<td>0.03 kg</td>
<td>0.015 kg</td>
<td>0.012 kg</td>
<td></td>
</tr>
<tr>
<td>BSA 28</td>
<td>0.03 kg</td>
<td>0.015 kg</td>
<td>0.012 kg</td>
<td></td>
</tr>
<tr>
<td>BSA 30</td>
<td>0.04 kg</td>
<td>0.02 kg</td>
<td>0.015 kg</td>
<td></td>
</tr>
<tr>
<td>BSA 40</td>
<td>0.05 kg</td>
<td>0.025 kg</td>
<td>0.02 kg</td>
<td></td>
</tr>
<tr>
<td>BSA 50</td>
<td>0.35 kg</td>
<td>0.04 kg</td>
<td>0.03 kg</td>
<td></td>
</tr>
<tr>
<td>BSA 63</td>
<td>0.75 kg</td>
<td>0.06 kg</td>
<td>0.05 kg</td>
<td></td>
</tr>
<tr>
<td>BSA 80</td>
<td>1.5 kg</td>
<td>0.1 kg</td>
<td>0.06 kg</td>
<td></td>
</tr>
<tr>
<td>BSA 100</td>
<td>2.5 kg</td>
<td>0.14 kg</td>
<td>0.07 kg</td>
<td></td>
</tr>
<tr>
<td>BSA 125</td>
<td>5.2 kg</td>
<td>0.18 kg</td>
<td>0.09 kg</td>
<td></td>
</tr>
</tbody>
</table>

- grease: AGIP Grease SLL 00
- grease: LUBCON Thermoplex ALN 1001

Linear actuators CLA Series

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th>INPUT DRIVE</th>
<th>LINEAR DRIVE</th>
<th>for actuator C100</th>
<th>for each additional 100 mm of stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLA 30</td>
<td>0.04 kg</td>
<td>0.02 kg</td>
<td>0.015 kg</td>
<td></td>
</tr>
<tr>
<td>CLA 40</td>
<td>0.05 kg</td>
<td>0.025 kg</td>
<td>0.02 kg</td>
<td></td>
</tr>
<tr>
<td>CLA 50</td>
<td>0.05 kg</td>
<td>0.04 kg</td>
<td>0.03 kg</td>
<td></td>
</tr>
</tbody>
</table>

- grease: AGIP Grease SM2

Linear actuators CLB Series

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th>INPUT DRIVE</th>
<th>LINEAR DRIVE</th>
<th>for actuator C100</th>
<th>for each additional 100 mm of stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLB 30</td>
<td>0.04 kg</td>
<td>0.02 kg</td>
<td>0.015 kg</td>
<td></td>
</tr>
<tr>
<td>CLB 40</td>
<td>0.05 kg</td>
<td>0.025 kg</td>
<td>0.02 kg</td>
<td></td>
</tr>
<tr>
<td>CLB 50</td>
<td>0.05 kg</td>
<td>0.04 kg</td>
<td>0.03 kg</td>
<td></td>
</tr>
</tbody>
</table>

- grease: AGIP Grease SM2
- grease: LUBCON Thermoplex ALN 1001
8.5 Lubricants

Linear actuators UAL Series

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th>BEARINGS</th>
<th>LINEAR DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAL 1</td>
<td>grease: SHELL Gadus S2 V100 2</td>
<td>0.03 kg</td>
</tr>
<tr>
<td>UAL 2</td>
<td>grease: AGIP Grease SM2</td>
<td>0.03 kg</td>
</tr>
<tr>
<td>UAL 3</td>
<td>grease: AGIP Grease SM2</td>
<td>0.04 kg</td>
</tr>
<tr>
<td>UAL 4</td>
<td>grease: AGIP Grease SM2</td>
<td>0.05 kg</td>
</tr>
<tr>
<td>UAL 5</td>
<td>grease: AGIP Grease SM2</td>
<td>0.065 kg</td>
</tr>
</tbody>
</table>

Linear actuators UBA Series

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th>BEARINGS</th>
<th>LINEAR DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBA 1</td>
<td>grease: SHELL Gadus S2 V100 2</td>
<td>0.03 kg</td>
</tr>
<tr>
<td>UBA 2</td>
<td>grease: LUBCON Thermoplex ALN 1001</td>
<td>0.03 kg</td>
</tr>
<tr>
<td>UBA 3</td>
<td>grease: LUBCON Thermoplex ALN 1001</td>
<td>0.04 kg</td>
</tr>
<tr>
<td>UBA 4</td>
<td>grease: LUBCON Thermoplex ALN 1001</td>
<td>0.05 kg</td>
</tr>
<tr>
<td>UBA 5</td>
<td>grease: LUBCON Thermoplex ALN 1001</td>
<td>0.06 kg</td>
</tr>
</tbody>
</table>

Attuatori lineari Serie TMA

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th>INPUT DRIVE</th>
<th>LINEAR DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMA 15</td>
<td>grease: AGIP Grease SM2</td>
<td>0.1 kg</td>
</tr>
<tr>
<td>TMA 25</td>
<td>grease: AGIP Grease SM2</td>
<td>0.5 kg</td>
</tr>
<tr>
<td>TMA 50</td>
<td>grease: AGIP Grease SM2</td>
<td>1 kg</td>
</tr>
<tr>
<td>TMA 100</td>
<td>grease: SELL Darina R2</td>
<td>2 kg</td>
</tr>
<tr>
<td>TMA 150</td>
<td>grease: SELL Darina R2</td>
<td>3 kg</td>
</tr>
<tr>
<td>TMA 200</td>
<td>grease: SELL Darina R2</td>
<td>5.2 kg</td>
</tr>
</tbody>
</table>

Linear actuators ILA . A Series

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th>BEARINGS</th>
<th>LINEAR DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILA 15 A</td>
<td>grease: SHELL Alvania Grease R2</td>
<td>0.1 kg</td>
</tr>
<tr>
<td>ILA 25 A</td>
<td>grease: AGIP Grease SM2</td>
<td>0.2 kg</td>
</tr>
<tr>
<td>ILA 50 A</td>
<td>grease: AGIP Grease SM2</td>
<td>0.4 kg</td>
</tr>
<tr>
<td>ILA 100 A</td>
<td>grease: AGIP Grease SM2</td>
<td>0.8 kg</td>
</tr>
<tr>
<td>ILA 150 A</td>
<td>grease: AGIP Grease SM2</td>
<td>1 kg</td>
</tr>
<tr>
<td>ILA 250 A</td>
<td>grease: AGIP Grease SM2</td>
<td>1.8 kg</td>
</tr>
</tbody>
</table>

Linear actuators ILA . B Series

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th>BEARINGS</th>
<th>LINEAR DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILA 15 B</td>
<td>grease: SHELL Alvania Grease R2</td>
<td>0.1 kg</td>
</tr>
<tr>
<td>ILA 25 B</td>
<td>grease: LUBCON Thermoplex ALN 1001</td>
<td>0.2 kg</td>
</tr>
<tr>
<td>ILA 50 B</td>
<td>grease: LUBCON Thermoplex ALN 1001</td>
<td>0.4 kg</td>
</tr>
<tr>
<td>ILA 100 B</td>
<td>grease: LUBCON Thermoplex ALN 1001</td>
<td>0.8 kg</td>
</tr>
<tr>
<td>ILA 150 B</td>
<td>grease: LUBCON Thermoplex ALN 1001</td>
<td>1 kg</td>
</tr>
<tr>
<td>ILA 250 B</td>
<td>grease: LUBCON Thermoplex ALN 1001</td>
<td>1.8 kg</td>
</tr>
</tbody>
</table>
SERVOMECH product range includes also:

Acme screw jacks

MA Series
- travelling screw (Mod.A)
- max. duty cycle: travelling screw: 40 % over 10 min (30 % over 1 hour)
- travelling nut: 30 % over 10 min (20 % over 1 hour)
- load capacity from 5 kN to 350 kN
- 8 sizes
- acme screw diameter from 18 mm to 100 mm
- 1-, 2-, 3- or 4-start acme screw
- input speed up to 3 000 rpm
- linear speed up to 300 mm/s
- worm gearbox lubricated with synthetic oil

MA Series
- travelling nut (Mod.B)
- max. duty cycle: travelling screw: 40 % over 10 min (30 % over 1 hour)
- load capacity from 5 kN to 350 kN
- 8 sizes
- acme screw diameter from 18 mm to 100 mm
- 1-, 2-, 3- or 4-start acme screw
- input speed up to 3 000 rpm
- linear speed up to 300 mm/s
- worm gearbox lubricated with synthetic oil

SJ Series
- travelling screw (Mod.A)
- max. duty cycle: 30 % over 10 min (20 % over 1 hour)
- load capacity from 5 kN to 1 000 kN
- 14 sizes
- acme screw diameter from 18 mm to 160 mm
- 1- or 2-start acme screw
- input speed up to 1 500 rpm
- linear speed up to 80 mm/s
- gearbox lubrication with synthetic grease

SJ Series
- travelling nut (Mod.B)
- max. duty cycle: 30 % over 10 min (20 % over 1 hour)
- load capacity from 5 kN to 1 000 kN
- 14 sizes
- acme screw diameter from 18 mm to 160 mm
- 1- or 2-start acme screw
- input speed up to 1 500 rpm
- linear speed up to 80 mm/s
- gearbox lubrication with synthetic grease
SERVOMECH product range includes also:

Ball screw jacks

- **MA . BS Series**
 - Travelling screw (Mod.A)
 - High performances, accuracy and stiffness
 - Duty cycle up to 100 % (continuous work)
 - Patented lubrication system
 - Ball nut with abundant grease reserve
 - Load capacity from 5 kN to 350 kN
 - 8 sizes
 - Ball screw diameter from 16 mm to 100 mm
 - Input speed up to 3000 rpm
 - Linear speed up to 285 mm/s

- **MA . BS Series**
 - Travelling nut (Mod.B)
 - Standard performances
 - Duty cycle up to 70 %
 - Load capacity from 5 kN to 300 kN
 - 9 sizes
 - Ball screw diameter from 16 mm to 100 mm
 - Input speed up to 1500 rpm
 - Linear speed up to 140 mm/s

HS Series
- Travelling nut (Mod.B)
 - High speed
 - Duty cycle up to 100 %
 - 6 sizes
 - Ball screw diameter from 25 mm to 80 mm
 - Input speed up to 3000 rpm
 - Linear speed up to 2 m/s

SJ . BS Series
- Travelling nut (Mod.B)
 - Linear speed up to 2 m/s
 - Input speed up to 1500 rpm
 - 6 sizes
 - Ball screw diameter from 25 mm to 80 mm
SERVOMECH product range includes also:

Bevel gearboxes

- Cubic form housing with 6 machined sides
- Bevel gears made in alloy steel, GLEASON spiral tooth profile
- 6 sizes
- Ratio: 1 : 1, 1 : 1.5, 1 : 2, 1 : 3, 1 : 4
- Max. input speed: 3 000 rpm
- Standard lubrication: grease
SERVOMECH product range includes also:

- Ball screws and nuts

- Whirled ball screws, accuracy grade IT3 or IT5
- Rolled ball screws, accuracy grade IT7
- Ball nuts with DIN 69051 flange or cylindrical flange
- Backlash-free or preloaded ball nuts

Italian technology
own production
entire in-house manufacturing

Ask for technical catalogues at:
info@servomech.it
SERVOMECH product range includes also:

- Acme screw jacks
- Ball screw jacks
- Bevel gearboxes
- Ball screws and nuts

To receive a free copy of the catalogue, please, contact:

📞 + 39 051 6501711 📞 + 39 051 734574 info@servomech.it

Servomech
new ideas in linear motion

SERVOMECH s.p.a.
Via M. Calari 1, 40011 Anzola dell’Emilia (BOLOGNA) ITALY
Phone: + 39 051 6501711 Fax: + 39 051 734574
www.servomech.it e-mail: info@servomech.it